數立方全力支持2023年高才通計畫(TTPS)
香港特區政府行政長官李家超先生上月發表施政報告,延續2022年高才通計畫,並表示非常重視引進國際人才,以提升香港的綜合競爭力
天氣與生死攸關。 天氣科學和預測天氣變化,不僅幫助我們了解環境及其不斷變化的性質,例如全球暖化,而且還可積極推動各方採取策略,改善災難應變準備、減輕經濟和人命損失(*1)並增強公民的整體福祉。
特徵工程是數據科學和機器學習中的重要術語。 數據科學家把 80% 的時間用於處理特徵工程任務,餘下20% 的時間用於訓練機器學習 (ML) (*3)。 詳細來說,過程中,選擇、轉換、提取、組合和操作原始數據,是產生分析或預測建模所需變數的關鍵過程 (*2)。
現今工廠生產線大多已經歷由人工密集模式,半自動化到全自動化。但也有為數不少的工廠管理層已逐步完成數字化流程 (Digital transformation),甚至開始推進智能化生產模式 (Intelligent / Smart manufacturing)。
資料普遍被視為是公司的命脈。它為管理者制訂策略前提供資訊,推動公司決策,並支撐業務運作。為了充分利用資料的巨大潛力,公司需要建立強大的資料架構。效能卓越的資料架構具有高度可靠性,安全性,且管理者容易存取資料。這樣,管理者便可確保資料可被充份保存和管理。本文我們將探討如何設計有效益的資料架構、其中關鍵元件和最佳的實施方案。
在當今的數位化時代,如何管理、存儲和訪問每日產生的大量數據成為了首要任務。這一責任歸屬於數據架構的專業領域。本文將探討數據架構從傳統到現代的發展軌跡。
在數位化時代,企業正日益依賴數據來推進業務,但隨之而來的是數據管理的複雜性和成本的上升。Gartner的報告進一步證實了這一觀點,指出由於數據完整性問題,企業每年可能損失高達1290萬美元。這些統計數據突顯了數據專家不僅要解決數據問題,更要關注如何從數據中創造價值。隨著年底的臨近,數據團隊應抓住機會,優化其策略,特別是在數據移轉中加強自動化測試的應用。
在一個數據被視為新石油的時代,業務的未來與人工智能(AI)和機器學習(ML)的進步密切相關。根據 IDC 的數據,高達83%的首席執行官希望將他們的公司轉變為以數據為中心的組織。此外,87%的C級高管認為,轉變為智能企業是他們的首要任務。
數據經常被譽為是現代的“黃金”。每家公司都在努力獲取更多的數據,特別是當涉及到訓練AI模型時。根據AI的具體任務,所需要的數據量各不相同。某些AI模型依賴于龐大的數據集,而有些只需要少量數據即可運行,這使得很多人在選擇合適的方法時感到迷茫。