数据工程:数据团队的主要考虑因素

在数字化时代,企业正日益依赖数据来推进业务,但随之而来的是数据管理的复杂性和成本的上升。Gartner的报告进一步证实了这一观点,指出由于数据完整性问题,企业每年可能损失高达1290万美元。这些统计数据突显了数据专家不仅要解决数据问题,更要关注如何从数据中创造价值。随着年底的临近,数据团队应抓住机会,优化其策略,特别是在数据迁移中加强自动化测试的应用。

数据科学如何在AI时代改变您的业务?

在一个数据被视为新石油的时代,业务的未来与人工智能(AI)和机器学习(ML)的进步密切相关。更加IDC的数据,高大83%的首席执行官希望将他们的公司转变为以数据为中心的组织。此外,87%的C级高管认为,转变为智能企业是他们的首要任务。